FSHD Myotubes with Different Phenotypes Exhibit Distinct Proteomes

نویسندگان

  • Alexandra Tassin
  • Baptiste Leroy
  • Dalila Laoudj-Chenivesse
  • Armelle Wauters
  • Céline Vanderplanck
  • Marie-Catherine Le Bihan
  • Frédérique Coppée
  • Ruddy Wattiez
  • Alexandra Belayew
چکیده

Facioscapulohumeral muscular dystrophy (FSHD) is a progressive muscle disorder linked to a contraction of the D4Z4 repeat array in the 4q35 subtelomeric region. This deletion induces epigenetic modifications that affect the expression of several genes located in the vicinity. In each D4Z4 element, we identified the double homeobox 4 (DUX4) gene. DUX4 expresses a transcription factor that plays a major role in the development of FSHD through the initiation of a large gene dysregulation cascade that causes myogenic differentiation defects, atrophy and reduced response to oxidative stress. Because miRNAs variably affect mRNA expression, proteomic approaches are required to define the dysregulated pathways in FSHD. In this study, we optimized a differential isotope protein labeling (ICPL) method combined with shotgun proteomic analysis using a gel-free system (2DLC-MS/MS) to study FSHD myotubes. Primary CD56(+) FSHD myoblasts were found to fuse into myotubes presenting various proportions of an atrophic or a disorganized phenotype. To better understand the FSHD myogenic defect, our improved proteomic procedure was used to compare predominantly atrophic or disorganized myotubes to the same matching healthy control. FSHD atrophic myotubes presented decreased structural and contractile muscle components. This phenotype suggests the occurrence of atrophy-associated proteolysis that likely results from the DUX4-mediated gene dysregulation cascade. The skeletal muscle myosin isoforms were decreased while non-muscle myosin complexes were more abundant. In FSHD disorganized myotubes, myosin isoforms were not reduced, and increased proteins were mostly involved in microtubule network organization and myofibrillar remodeling. A common feature of both FSHD myotube phenotypes was the disturbance of several caveolar proteins, such as PTRF and MURC. Taken together, our data suggest changes in trafficking and in the membrane microdomains of FSHD myotubes. Finally, the adjustment of a nuclear fractionation compatible with mass spectrometry allowed us to highlight alterations of proteins involved in mRNA processing and stability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myoblasts from affected and non-affected FSHD muscles exhibit morphological differentiation defects

Facioscapulohumeral dystrophy (FSHD) is a muscular hereditary disease with a prevalence of 1 in 20,000 caused by a partial deletion of a subtelomeric repeat array on chromosome 4q. However, very little is known about the pathogenesis as well as the molecular and biochemical changes linked to the progressive muscle degeneration observed in these patients. Several studies have investigated possib...

متن کامل

Wnt/β-catenin signaling suppresses DUX4 expression and prevents apoptosis of FSHD muscle cells.

Facioscapulohumeral muscular dystrophy is a dominantly inherited myopathy associated with chromatin relaxation of the D4Z4 macrosatellite array on chromosome 4. DUX4 is encoded within each unit of the D4Z4 array where it is normally transcriptionally silenced and packaged as constitutive heterochromatin. Truncation of the array to less than 11 D4Z4 units (FSHD1) or mutations in SMCHD1 (FSHD2) r...

متن کامل

Morpholino-mediated Knockdown of DUX4 Toward Facioscapulohumeral Muscular Dystrophy Therapeutics

Derepression of DUX4 in skeletal muscle has emerged as a likely cause of pathology in facioscapulohumeral muscular dystrophy (FSHD). Here we report on the use of antisense phosphorodiamidate morpholino oligonucleotides to suppress DUX4 expression and function in FSHD myotubes and xenografts. The most effective was phosphorodiamidate morpholino oligonucleotide FM10, which targets the polyadenyla...

متن کامل

Cancer-related genes in the transcription signature of facioscapulohumeral dystrophy myoblasts and myotubes

Muscular dystrophy is a condition potentially predisposing for cancer; however, currently, only Myotonic dystrophy patients are known to have a higher risk of cancer. Here, we have searched for a link between facioscapulohumeral dystrophy (FSHD) and cancer by comparing published transcriptome signatures of FSHD and various malignant tumours and have found a significant enrichment of cancer-rela...

متن کامل

Expression Profiling of FSHD-1 and FSHD-2 Cells during Myogenic Differentiation Evidences Common and Distinctive Gene Dysregulation Patterns

BACKGROUND Determine global gene dysregulation affecting 4q-linked (FSHD-1) and non 4q-linked (FSHD-2) cells during early stages of myogenic differentiation. This approach has been never applied to FSHD pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS By in vitro differentiation of FSHD-1 and FSHD-2 myoblasts and gene chip analysis we derived that gene expression profile is altered only in FSHD-1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012